Girth Gears: Theory and Technology
Fabricated Girth Gear
Forged and electro welded technology

Our choice is Fabricated Girth gear:

- The forged material structure excludes the risk of inclusions and request for repair welding of the body structure and e.g. grinding of toothed areas.

- The welding procedure exclude the need of patterns, reducing the lead time and ensure high quality product supply with customized design
Fabricated Steel

Advantages:

- Good physical properties in all directions.
- No micro-porosities such as gas holes, micro-shrinkage and pinholes.
- Absence of macro defects such as hot tears, shrinkage and sand inclusions.
- No weld repairs or “blend-outs” required in critical tooth areas or web.
- Very good metallurgical yield.
- Repeatability of dimensions and orientation.
- Uniform metallurgical chemistry.

Challenges:

- “Give me what I have (cast steel)”
Manufacturing procedure

- Forging Material process
- Welding process
- QA NDT Inspection
- Machining process
- QA Final Inspection
- Packing and shipping
Forging Material process

- Forging
- Final Rolling
- Furnace Cooling
- Control on production
- Water quenching
- Hardness testing
- Rough machining
- Ultrasonic Testing and Measuring
- Final inspection Certification
Certificate and Qualification

- WELDING PROCESS QUALIFIED
 Welding Procedure Approval Record – WPAR
 Procedure Qualification Record - PQR
 Welding Procedure Specification – WPS
 Welder Qualification Record – WQR

ACCORDING TO THE STANDARDS

ITALIAN AND INTERNATIONAL WELDING INSTITUTE
Welding Procedure

<table>
<thead>
<tr>
<th>ITEM</th>
<th>AWS D1.1 2010</th>
<th>ASME CODE IX 2010</th>
<th>UNI EN ISO 15614-1 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stell Structural welding</td>
<td>Pressure recipint welding</td>
<td>Structure - PED</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>ASTM (not A 291)</td>
<td>ASTM / Comparison</td>
<td>UNI</td>
</tr>
<tr>
<td>Request</td>
<td>PQR - WPS</td>
<td>PQR - WPS</td>
<td>PQR - WPS</td>
</tr>
</tbody>
</table>
Welding process

- preparation of all web, ribs and junction plate with cutting software.

- Bending of external Rim + Hardness test
Welding process

- Fit-up and welding of complete internal web
- Preparation of chamfer
- Fit up and Weld external Rib with intyernal web plate
- Fit up and welding of joint flanges
Welding process

- NDT control before heat treatment
- PWHT Post weld heat treatment
Welding process

- NDT - QA inspection
- Sand blasting and paint
Certificate and Qualification

- NON DESTRUCTIVE TEST

ASNT - qualification 2° Level SNT-TC-1°
UNI EN 473 - ISO 9712 Qualification 2° Level

Ultrasonic testing
Magnetic particle
Penetrant testing
Machining Process

- Mill Split Joints and holes
- Assemble gear halves
Machining Process

- Plunge and rough cut teeth
- Open joint inspection
- Finish machining, drill
Machining Process

- Finish hob teeth
- QA Final inspection
Quality Inspection Test Plan

- QT Forged material - Chemical and mechanical properties
- certificate of HT
- Inspect gear rim hardness
- UT reports for rim material
- Welding procedures WPQR – WPS
- Welding map
- Stress relieving PWHT Diagram
- UT and MT 100% welding area before and After PWHT
Quality Inspection Test Plan

- inspect final girth gear run-out on gear cutter
- inspect tooth flank surface finish
- inspect pitch, profile and pitch line pattern
- MT test 100% teeth area
- Inspect joint flange tightness and Open joint
- final document review
Mounting Flange

- Layout of bolt holes
- Runout of flange
- Flatness of flange
- Alignment of gear dependent on accuracy of flange.
- Use of shims should be avoided.
Excessive Gear Runout

- Setup and support in vertical boring mill
- Setup and support in finish gear cutter

- FLSmidth tolerance for as-machined ø6.4m gear
 - Roller supported - axial 0.10mm, radial 0.13mm
 - Flange mounted – axial 0.08mm, radial 0.13mm

- FLSmidth installation tolerance for same ø6.4 gear
 - Roller supported – axial 0.53mm, radial 0.80mm
 - Flange mounted – axial 0.27mm, radial 0.40mm

- Why critical?
 - Indicator of gear set alignment and ultimately the achievable life expectancy of the gear set.
AGMA Tooth Quality Requirements

- **Flange mounted gear sets:**
 - Gear
 - Pitch Q10
 - Profile Q10
 - Lead Q10
 - Runout Q10
 - Case-hardened pinion
 - Pitch Q12
 - Profile Q12
 - Lead Q12
 - Runout Q12

- **Spring mounted gear sets:**
 - Gear
 - Pitch Q8
 - Profile Q8
 - Lead Q8
 - Runout Q8
 - Through-hardened pinion
 - Pitch Q10
 - Profile Q10
 - Lead Q10
 - Runout Q10
Profile quality control

Balance wheel after cutting

Balance wheel after grinding

Human hair

70 µm
Why quality is so important

Total Girth Gear installation cost survey

Calculation example:

Kiln size ø5.0 x 90 m
Production: 4500 tpd

- Estimated cost of parts: Girth gear + springs etc. EUR 450.000,- (27%)
- Est. mech. erection costs: EUR 130.000,- (8%)
 29% of parts cost
- Estimated consequential loss: EUR 1.080.000,- (65%)
 EUR 4500/hour in 10 days
- Total installation costs: EUR 1.660.000,- (100%)

Conclusion:

- The cost of the Girth Gear is only a "piece of the cake" compared with the total substantial installation cost.
- Long term solution with high FLSmidth quality is the best solution to ensure a beneficial investment.
Reference List

Mill - Girth Gears
Reference List

Mill - Girth Gears

1975 - 2011

<table>
<thead>
<tr>
<th></th>
<th>Company Name</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POLYSIUS GERMANIA</td>
<td>525</td>
</tr>
<tr>
<td>2</td>
<td>POLYSIUS FRANCIA</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>POLYSIUS SPAGNA</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>POLYSIUS INDIA</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>POLYSIUS BRASILE</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>POLYSIUS USA</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>POLYSIUS AUSTRALIA</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>POLYSIUS SOUTH AFRICA</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>THYSSENKRUpp</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>FLSMIDTH</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>FLSMIDTH MINERALS</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>SIEMENS</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>HOLCIM</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>FLENDER</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>LA FARGE</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>CVRD VALE</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>KHD</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>SCHLENK</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>MEERSTETTER</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>FERRY CAPITAIN</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>CMD</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>HEIDELBERG</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>CEMEX</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>TEUTRINE</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>ITALCEMENTI</td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>I.C.F.</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>FEMA</td>
<td>11</td>
</tr>
<tr>
<td>28</td>
<td>SUEZ CEMENT</td>
<td>5</td>
</tr>
<tr>
<td>29</td>
<td>YTONG</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>ESSROC USA</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>ZAMZAM</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>COLACEM</td>
<td>5</td>
</tr>
<tr>
<td>33</td>
<td>Other</td>
<td>65</td>
</tr>
</tbody>
</table>

Total 857
Reference List

Kiln - Girth Gears
Reference List

Kiln - Girth Gears 1975 - 2011

<table>
<thead>
<tr>
<th>#</th>
<th>Company</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POLYSIUS GERMANIA</td>
<td>126</td>
</tr>
<tr>
<td>2</td>
<td>POLYSIUS FRANCIA</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>POLYSIUS SPAGNA</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>POLYSIUS INDIA</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>THYSSENKRUPP</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>FLSMIDTH</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>HOLCIM</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>FLENDER</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>LA FARGE</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>KHD</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>SCHLENK</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>MEERSTETTER</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>HEIDELBERG</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>CEMEX</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>ITALCEMENTI</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>COLACEM</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Other</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Kiln – Girth Gear: 234
THANK YOU